Effects of an EGFR-binding affibody molecule on intracellular signaling pathways

16Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Effects on intracellular signaling were studied in cells treated with the affibody molecule (ZEGFR:955)2 that targets the epithelial growth factor receptor (EGFR). EGFR is overexpressed in many types of cancers and plays a fundamental role in cell signaling and it is of interest to find targeting agents capable of blocking the receptor. The clinically approved antibody cetuximab (Erbitux®) and the natural ligand EGF were included as reference molecules. Two EGFR-rich cell lines, A-431 and U-343, were exposed to the three targeting agents and lysed. The cell lysates were immunoprecipitated with the receptors, or directly separated by SDS-Page. Autophosphorylation of the receptors and phosphorylation of the downstream signaling proteins Erk and Akt, were evaluated by Western blotting. Although the three different agents compete for the same binding site on EGFR, they influenced the signaling differently. The affibody molecule did not induce autophosphorylation of EGFR or any other receptor in the EGFR-family but, in spite of this, induced phosphorylation of Erk in both cell lines and Akt in the A-431 cells. Thus, the results suggest that the signaling pattern induced by (ZEGFR:955) 2 is only partly similar to that induced by cetuximab. This makes the affibody molecule a potentially interesting alternative to cetuximab for EGFR-targeted therapy since it might give different therapy-related effects on tumor cells and different side effects on normal tissues.

Cite

CITATION STYLE

APA

Nordberg, E., Ekerljung, L., Sahlberg, S. H., Carlsson, J., Lennartsson, J., & Glimelius, B. (2010). Effects of an EGFR-binding affibody molecule on intracellular signaling pathways. International Journal of Oncology, 36(4), 967–972. https://doi.org/10.3892/ijo_00000576

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free