Bootstrapping in-situ workflow auto-Tuning via combining performance models of component applications

11Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In an in-situ workflow, multiple components such as simulation and analysis applications are coupled with streaming data transfers the multiplicity of possible configurations necessitates an auto-Tuner for workflow optimization. Existing auto-Tuning approaches are computationally expensive because many configurations must be sampled by running the whole workflow repeatedly in order to train the autotuner surrogate model or otherwise explore the configuration space. To reduce these costs, we instead combine the performance models of component applications by exploiting the analytical workflow structure, selectively generating test configurations to measure and guide the training of a machine learning workflow surrogate model. Because the training can focus on well-performing configurations, the resulting surrogate model can achieve high prediction accuracy for good configurations despite training with fewer total configurations. Experiments with real applications demonstrate that our approach can identify significantly better configurations than other approaches for a fixed computer time budget.

Cite

CITATION STYLE

APA

Shu, T., Guo, Y., Wozniak, J., Ding, X., Foster, I., & Kurc, T. (2021). Bootstrapping in-situ workflow auto-Tuning via combining performance models of component applications. In International Conference for High Performance Computing, Networking, Storage and Analysis, SC. IEEE Computer Society. https://doi.org/10.1145/3458817.3476197

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free