Human activity has been increasing, to support the activity, people in the modern era create robots to replace some human activities. The interest in two-wheeled balance robots has continued to increase, this is because it is highly maneuverable, making it efficient for use in various areas. In this study, the online navigation of a two-wheeled self-balancing robot is done. The connection between the robot and online navigation is using a Wi-Fi connection. The world model base on the real room is created by Gazebo and then visualized in RVIZ. The map creation and navigation process are handled by the package provided by ROS. The results of the simulation and real tracking show that the robot can move from the starting point to the destination point in either a straight or a curved path. The difference of the final position of the robot between simulation and real tracking is only (15.4 cm, 4 cm) and (9.6 cm, 43 cm) for the straight and curved path. This result proved that online navigation can be used to navigate an autonomous robot without real navigation sensors.
CITATION STYLE
Maghfiroh, H., & Santoso, H. P. (2021). Self-balancing robot navigation. Journal of Robotics and Control (JRC), 2(5), 408–412. https://doi.org/10.18196/jrc.25115
Mendeley helps you to discover research relevant for your work.