As the only kind of naturally-occurring biopolyester synthesized by various microorganisms, polyhydroxyalkanoate (PHA) shows a great market potential in packaging, fiber, biomedical, and other fields due to its biodegradablity, biocompatibility, and renewability. However, the inherent defects of scl-PHA with low 3HV or 4HB content, such as high stereoregularity, slow crystallization rate, and particularly the phenomena of formation of large-size spherulites and secondary crystallization, restrict the processing and stability of scl-PHA, as well as the application of its products. Many efforts have focused on the modification of scl-PHA to improve the mechanical properties and the applicability of obtained scl-PHA products. The modification of structure and property together with the potential applications of scl-PHA are covered in this review to give a comprehensive knowledge on the modification and processing of scl-PHA, including the effects of physical blending, chemical structure design, and processing conditions on the crystallization behaviors, thermal stability, and mechanical properties of scl-PHA.
CITATION STYLE
Wang, S., Chen, W., Xiang, H., Yang, J., Zhou, Z., & Zhu, M. (2016, July 28). Modification and potential application of short-chain-length polyhydroxyalkanoate (SCL-PHA). Polymers. MDPI AG. https://doi.org/10.3390/polym8080273
Mendeley helps you to discover research relevant for your work.