Cold recycled asphalt mixtures (CRAM) are a cost-effective and environmentally-friendly way to reuse reclaimed asphalt pavement (RAP). This paper evaluates the rheological properties and microstructure of mineral filler-asphalt mastic, mineral filler-residue mastic, and cement-residue mastic. Then, based on the premise of using 100% RAP with a gradation that was determined experimentally, the effects of emulsified asphalt and cement on the porosity, indirect tensile strength, tensile strength ratio, dynamic stability, and mechanical properties of CRAM were evaluated. It was found that the rheological properties and cohesive coefficient of the cement-residue mastic varied differently to those of the first two types of mastic and the results show that the addition of cement can greatly improve the interfacial bonding between binders and fillers in the mastic, thereby improving the water damage resistance and high-temperature stability of CRAM. The relationships between cement content and the dynamic modulus and phase angle of CRAM are different to that for emulsified asphalt obviously. In addition, under certain conditions, the properties of CRAM can meet the requirements of relevant technical specifications for its application to subsurface layer of pavement. Hence, the use of 100% RAP in CRAM may be feasible.
CITATION STYLE
Li, Y., Lyv, Y., Fan, L., & Zhang, Y. (2019). Effects of cement and emulsified asphalt on properties of mastics and 100% cold recycled asphalt mixtures. Materials, 12(5). https://doi.org/10.3390/ma12050754
Mendeley helps you to discover research relevant for your work.