Condor: Better Topologies Through Declarative Design

5Citations
Citations of this article
98Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The design space for large, multipath datacenter networks is large and complex, and no one design fits all purposes. Network architects must trade off many criteria to design cost-effective, reliable, and maintainable networks, and typically cannot explore much of the design space. We present Condor, our approach to enabling a rapid, efficient design cycle. Condor allows architects to express their requirements as constraints via a Topology Description Language (TDL), rather than having to directly specify network structures. Condor then uses constraint-based synthesis to rapidly generate candidate topologies, which can be analyzed against multiple criteria. We show that TDL supports concise descriptions of topologies such as fat-trees, BCube, and DCell; that we can generate known and novel variants of fat-trees with simple changes to a TDL file; and that we can synthesize large topologies in tens of seconds. We also show that Condor supports the daunting task of designing multi-phase network expansions that can be carried out on live networks.

Cite

CITATION STYLE

APA

Schlinker, B., Mysore, R. N., Smith, S., Mogul, J. C., Vahdat, A., Yu, M., … Rubin, M. (2015). Condor: Better Topologies Through Declarative Design. Computer Communication Review, 45(4), 449–463. https://doi.org/10.1145/2785956.2787476

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free