Enhancing the tool die steel profile cutting performance in WEDM process

1Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This work elaborates the experimental work on Material Removal Rate (MRR) and Surface Roughness (SR) output conditions of Wire-Electrical Discharge Machining (WEDM) and finding the optimal input conditions through Taguchi method coupled with Grey relational analysis for lower SR and higher MRR during profile cutting of high strength D3 tool steel, which is the need of the hour in industries. The machining factors considered for investigation which influences MRR and SR were: cutting speed, pulse on-time and off-time, input current, wire tension and feed and servo feed and voltage. A L18 orthogonal array was considered for mixed-level experimental design through Taguchi’s approach and for multi-criteria optimization Grey Relational Analysis was applied. Outcome shows that SR increases with the increase of pulse on-time and decreases with increase in pulse off-time and MRR increases as the pulse on-time increases due to longer spark duration. Both SR and MRR are well within the control limits and servo voltage is the most influential parameter contributing by 48.48%, followed by wire feed rate, input current and servo feed rate with an R2 value of 95.85%, identified through Analysis of Variance (ANOVA). With obtained optimum conditions, a validation experiment was conducted to authenticate the results, which indicates a worthy agreement with predicted output characteristics.

Cite

CITATION STYLE

APA

Saravanan, M., Thiagarajan, C., & Somasundaram, S. (2019). Enhancing the tool die steel profile cutting performance in WEDM process. International Journal of Engineering and Advanced Technology, 9(1), 2626–2636. https://doi.org/10.35940/ijeat.A9865.109119

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free