ANALISA AKURASI PERMODELAN SUPERVISED DAN UNSUPERVISED LEARNING MENGGUNAKAN DATA MINING

  • Nengsih W
N/ACitations
Citations of this article
151Readers
Mendeley users who have this article in their library.

Abstract

Data Mining merupakan salah satu proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, machine learning untuk mengekstraksi dan mengidentifikasi informasi yang bermanfaat dan pengetahuan yang terkait dari berbagai database besar. Data mining memiliki dua jenis pembelajaran diantaranya supervised learning dan unsupervised learning. Tentunya setiap pembelajaran memiliki teknik dan algoritma tersendiri. Penelitian ini bertujuan untuk melakukan permodelan dari setiap learning dengan mengukur akurasi dari kedua jenis learning tersebut menggunakan beberapa metode pengujian. Sementara untuk rancang sistem menggunakan bahasa pemograman matlab. Belum adanya pengukuran akurasi dari kedua learning menjadi hal yang melatarbelakangi penelitian ini. Dari hasil pengujian akurasi menggunakan confusion matrix dan lift ratio diperoleh hasil bahwa perbandingan rata-rata akurasi untuk supervised learning adalah 82,33% dan unsupervised learning sebesar 78% dengan selisih nilai akurasi sebesar 4,33%. Nilai akurasi dipengaruhi oleh jumlah serta keberagaman dimensi data. Jadi dengan kasus dan jumlah serta dimensi yang berbeda akan menghasilkan nilai akurasi yang beragam pula.

Cite

CITATION STYLE

APA

Nengsih, W. (2019). ANALISA AKURASI PERMODELAN SUPERVISED DAN UNSUPERVISED LEARNING MENGGUNAKAN DATA MINING. Sebatik, 23(2), 285–291. https://doi.org/10.46984/sebatik.v23i2.771

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free