"Gate-keeper" Residues and Active-Site Rearrangements in DNA Polymerase μ Help Discriminate Non-cognate Nucleotides

10Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Incorporating the cognate instead of non-cognate substrates is crucial for DNA polymerase function. Here we analyze molecular dynamics simulations of DNA polymerase μ (pol μ) bound to different non-cognate incoming nucleotides including A:dCTP, A:dGTP, A(syn):dGTP, A:dATP, A(syn):dATP, T:dCTP, and T:dGTP to study the structure-function relationships involved with aberrant base pairs in the conformational pathway; while a pol μ complex with the A:dTTP base pair is available, no solved non-cognate structures are available. We observe distinct differences of the non-cognate systems compared to the cognate system. Specifically, the motions of active-site residue His329 and Asp330 distort the active site, and Trp436, Gln440, Glu443 and Arg444 tend to tighten the nucleotide-binding pocket when non-cognate nucleotides are bound; the latter effect may further lead to an altered electrostatic potential within the active site. That most of these "gate-keeper" residues are located farther apart from the upstream primer in pol μ, compared to other X family members, also suggests an interesting relation to pol μ's ability to incorporate nucleotides when the upstream primer is not paired. By examining the correlated motions within pol μ complexes, we also observe different patterns of correlations between non-cognate systems and the cognate system, especially decreased interactions between the incoming nucleotides and the nucleotide-binding pocket. Altered correlated motions in non-cognate systems agree with our recently proposed hybrid conformational selection/induced-fit models. Taken together, our studies propose the following order for difficulty of non-cognate system insertions by pol μ: T:dGTP

Cite

CITATION STYLE

APA

Li, Y., & Schlick, T. (2013). “Gate-keeper” Residues and Active-Site Rearrangements in DNA Polymerase μ Help Discriminate Non-cognate Nucleotides. PLoS Computational Biology, 9(5). https://doi.org/10.1371/journal.pcbi.1003074

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free