Abstract
Incorporating the cognate instead of non-cognate substrates is crucial for DNA polymerase function. Here we analyze molecular dynamics simulations of DNA polymerase μ (pol μ) bound to different non-cognate incoming nucleotides including A:dCTP, A:dGTP, A(syn):dGTP, A:dATP, A(syn):dATP, T:dCTP, and T:dGTP to study the structure-function relationships involved with aberrant base pairs in the conformational pathway; while a pol μ complex with the A:dTTP base pair is available, no solved non-cognate structures are available. We observe distinct differences of the non-cognate systems compared to the cognate system. Specifically, the motions of active-site residue His329 and Asp330 distort the active site, and Trp436, Gln440, Glu443 and Arg444 tend to tighten the nucleotide-binding pocket when non-cognate nucleotides are bound; the latter effect may further lead to an altered electrostatic potential within the active site. That most of these "gate-keeper" residues are located farther apart from the upstream primer in pol μ, compared to other X family members, also suggests an interesting relation to pol μ's ability to incorporate nucleotides when the upstream primer is not paired. By examining the correlated motions within pol μ complexes, we also observe different patterns of correlations between non-cognate systems and the cognate system, especially decreased interactions between the incoming nucleotides and the nucleotide-binding pocket. Altered correlated motions in non-cognate systems agree with our recently proposed hybrid conformational selection/induced-fit models. Taken together, our studies propose the following order for difficulty of non-cognate system insertions by pol μ: T:dGTP
Cite
CITATION STYLE
Li, Y., & Schlick, T. (2013). “Gate-keeper” Residues and Active-Site Rearrangements in DNA Polymerase μ Help Discriminate Non-cognate Nucleotides. PLoS Computational Biology, 9(5). https://doi.org/10.1371/journal.pcbi.1003074
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.