Abstract
Magnetosomes are complex bacterial organelles that serve as model systems for studying bacterial cell biology, biomineralization, and global iron cycling. Magnetosome biogenesis is primarily studied in two closely related Alphaproteobacteria of the genus Magnetospirillum that form cubooctahedral-shaped magnetite crystals within a lipid membrane. However, chemically and structurally distinct magnetic particles have been found in physiologically and phylogenetically diverse bacteria. Due to a lack of molecular genetic tools, the mechanistic diversity of magnetosome formation remains poorly understood. Desulfovibrio magneticus RS-1 is an anaerobic sulfate-reducing deltaproteobacterium that forms bullet-shaped magnetite crystals. A recent forward genetic screen identified 10 genes in the conserved magnetosome gene island of D. magneticus that are essential for its magnetic phenotype. However, this screen likely missed mutants with defects in crystal size, shape, and arrangement. Reverse genetics to target the remaining putative magnetosome genes using standard genetic methods of suicide vector integration have not been feasible due to the low transconjugation efficiency. Here, we present a reverse genetic method for targeted mutagenesis in D. magneticus using a replicative plasmid. To test this method, we generated a mutant resistant to 5-fluorouracil by making a markerless deletion of the upp gene that encodes uracil phosphoribosyltransferase. We also used this method for targeted marker exchange mutagenesis by replacing kupM, a gene identified in our previous screen as a magnetosome formation factor, with a streptomycin resistance cassette. Overall, our results show that targeted mutagenesis using a replicative plasmid is effective in D. magneticus and may also be applied to other genetically recalcitrant bacteria.
Author supplied keywords
Cite
CITATION STYLE
Grant, C. R., Rahn-Lee, L., LeGault, K. N., & Komeili, A. (2018). Genome editing method for the anaerobic magnetotactic bacterium Desulfovibrio magneticus RS-1. Applied and Environmental Microbiology, 84(22). https://doi.org/10.1128/AEM.01724-18
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.