Methodology for estimating landslides susceptibility using artificial neural networks

1Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

In this study, the susceptibility to landslides at Sevilla township, Valle del Cauca, located at southwest of Colombia was evaluated. The conditioning factors that involve the generation of landslides were evaluated using Geographic Information Systems (GIS) and Remote Sensing (RS) techniques. For the estimating susceptibility, an Artificial Neural Network (ANN) was implemented by applying the "Backpropagation" method to extract the synoptic weights of the conditioning variables (slopes, flow length, curvature, geology, fracture density, and land cover) on an automatic way with a data training module. The data for the analysis of the conditioning factors were carried out through a Digital Elevation Model (DEM) obtained through Radar Interferometry techniques, with Sentinel-1B satellite images for the year 2018. The results showed that Sevilla's township has areas with high susceptibility, high slopes, and that it's crossed by an active geological fault which implies that the earth's dynamics will condition the terrain stability.

Cite

CITATION STYLE

APA

Muñoz, E. N., Sánchez, O. D., & Hernandez, F. L. (2020). Methodology for estimating landslides susceptibility using artificial neural networks. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 42, pp. 533–538). International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-533-2020

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free