The study aimed to assess the seasonal variation in raw milk volatile organic compounds (VOCs) from three indoor feeding systems based on maize silage (n = 31), silages/hay (n = 19) or hay (n = 16). After headspace solid-phase microextraction (HS-SPME), VOC profiles were determined by gas chromatography (GC). Chemical and VOC (log10 transformations of the peak areas) data were submitted to a two-way ANOVA to assess the feeding system (FS) and season (S) effects; an interactive principal component analysis (iPCA) was also performed. The interaction FS × S was never significant. The FS showed the highest (p < 0.05) protein and casein content for hay-milk samples, while it did not affect any VOCs. Winter milk had higher (p < 0.05) proportions of protein, casein, fat and some carboxylic acids, while summer milk was higher (p < 0.05) in urea and 2-pentanol and methyl aldehydes. The iPCA confirmed a seasonal spatial separation. Carboxylic acids might generate from incomplete esterification in the mammary gland and/or milk lipolytic activity, while aldehydes seemed to be correlated with endogenous lipid or amino acid oxidation and/or feed transfer. The outcomes suggested that VOCs could be an operative support to trace raw milk for further mild processing.
CITATION STYLE
Zacometti, C., Tata, A., Massaro, A., Riuzzi, G., Bragolusi, M., Cozzi, G., … Segato, S. (2023). Seasonal Variation in Raw Milk VOC Profile within Intensive Feeding Systems. Foods, 12(9). https://doi.org/10.3390/foods12091871
Mendeley helps you to discover research relevant for your work.