t-SMILES: a fragment-based molecular representation framework for de novo ligand design

24Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Effective representation of molecules is a crucial factor affecting the performance of artificial intelligence models. This study introduces a flexible, fragment-based, multiscale molecular representation framework called t-SMILES (tree-based SMILES) with three code algorithms: TSSA (t-SMILES with shared atom), TSDY (t-SMILES with dummy atom but without ID) and TSID (t-SMILES with ID and dummy atom). It describes molecules using SMILES-type strings obtained by performing a breadth-first search on a full binary tree formed from a fragmented molecular graph. Systematic evaluations using JTVAE, BRICS, MMPA, and Scaffold show the feasibility of constructing a multi-code molecular description system, where various descriptions complement each other, enhancing the overall performance. In addition, it can avoid overfitting and achieve higher novelty scores while maintaining reasonable similarity on labeled low-resource datasets, regardless of whether the model is original, data-augmented, or pre-trained then fine-tuned. Furthermore, it significantly outperforms classical SMILES, DeepSMILES, SELFIES and baseline models in goal-directed tasks. And it surpasses state-of-the-art fragment, graph and SMILES based approaches on ChEMBL, Zinc, and QM9.

Cite

CITATION STYLE

APA

Wu, J. N., Wang, T., Chen, Y., Tang, L. J., Wu, H. L., & Yu, R. Q. (2024). t-SMILES: a fragment-based molecular representation framework for de novo ligand design. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49388-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free