Using seawater-based Na2CO3 medium for scrubbing the CO2 released from Bio-CNG plant for enhanced biomass production of Pseudanabaena limnetica

7Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The concentration of CO2, one of the most important greenhouse gases (GHG), has reached to 409.8 ± 0.1 ppm in 2019. Although there are many carbon capture and storage (CCS) methods, they are very costly and their long term use raises concern about environmental safety. Alternatively, bio-sequestration of CO2 using microalgal cell factories has emerged as a promising way of recycling CO2 into biomass via photosynthesis. In the present study, Indigenous algal strain Pseudanabaena limnetica was cultivated in pneumatically agitated 60-L flat-panel photobioreactor system. The gas was released from Bio-CNG plant as by-product into Na2CO3-rich medium and cultivated in semicontinuous mode of operation. It was observed that when CO2 was sparged in seawater-based 0.02 M Na2CO3 solution, maximum CO2 was dissolved in the system and was used for algal cultivation. Control system produced 0.64 ± 0.035 g/L of biomass at the end of 15 days, whereas CO2 sparged Na2CO3 medium produced 0.81 ± 0.046 g/L of biomass. When CO2 from Bio-CNG station was fed, it resulted in biomass production of 1.62 ± 0.070 g/L at the end of 18 days compared to 1.46 ± 0.066 g/L of biomass produced in control system which was not fed with gas released from Bio-CNG plant as by-product. Thus, feeding CO2 directly into Na2CO3 medium and operating the system semicontinuously would be efficient for scrubbing CO2 from commercial Bio-CNG plant. This study proves that feeding CO2 gas from Bio-CNG plant into Na2CO3-rich alkaline system can be used to feed algae for enhanced biomass production.

Cite

CITATION STYLE

APA

Rambhiya, S. J., Magar, C. S., & Deodhar, M. A. (2021). Using seawater-based Na2CO3 medium for scrubbing the CO2 released from Bio-CNG plant for enhanced biomass production of Pseudanabaena limnetica. SN Applied Sciences, 3(2). https://doi.org/10.1007/s42452-021-04271-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free