Exploring the role of crystal habit in the Ostwald rule of stages

5Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The crystallization of calcium carbonate is shown to be dictated by the Ostwald rule of stages (ORS), for high relative initial supersaturations (SCaCO3=[Ca2+][CO32-]/KSP, Calcite>2500), under sweet (carbon dioxide saturated) and anoxic (oxygen depleted) solution conditions. Rhombohedral calcite crystals emerge after the sequential crystallization and dissolution of the metastable polymorphs: vaterite (snowflake-shaped) and aragonite (needle-shaped). However, the presence of certain cations, which can form trigonal carbonates (e.g. Fe 2+ and Ni 2+), in concentrations as low as 1.5 mM, triggers the emergence of calcite crystals, with a star-shaped crystal habit, first. These star-shaped crystals dissolve to yield needle-shaped aragonite crystals, which in turn dissolve to give the rhombohedral calcite crystals. The star-shaped crystals, formed at high S CaCO 3, possess higher surface free energy (therefore higher apparent solubility) than their rhombohedral counterparts. This sequence of dissolution and recrystallization demonstrates that the ORS does not only drive the crystal towards its thermodynamically most stable polymorph but also towards its most stable crystal habit.

Cite

CITATION STYLE

APA

Hadjittofis, E., Vargas, S. M., Litster, J. D., & Campbell, K. L. S. (2022). Exploring the role of crystal habit in the Ostwald rule of stages. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478(2258). https://doi.org/10.1098/rspa.2021.0601

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free