Influence of Al2O3nanoparticle doping on depolarization temperature, and electrical and energy harvesting properties of lead-free 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3ceramics

28Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

In this research article, the effects of Al2O3nanoparticles (0-1.0 mol%) on the phase formation, microstructure, dielectric, ferroelectric, piezoelectric, electric field-induced strain and energy harvesting properties of the 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3(BNT-6BT) ceramic were investigated. All ceramics have been synthesized by a conventional mixed oxide method. The XRD and Raman spectra showed coexisting rhombohedral and tetragonal phases throughout the entire compositional range. An increase of the grain size,TF-R,Tm,εmaxandδAvalues was noticeable when Al2O3was added. Depolarization temperature (Td), which was determined by the thermally stimulated depolarization current (TSDC), tended to increase with Al2O3content. The good ferroelectric properties (Pr= 32.64 μC cm−2,Ec= 30.59 kV cm−1) and large low-fieldd33(205 pC N−1) values were observed for the 0.1 mol% Al2O3ceramic. The small Al2O3additive improved the electric field-induced strain (Smaxand). The 1.0 mol% Al2O3ceramic had a large piezoelectric voltage coefficient (g33= 32.6 × 10−3Vm N−1) and good dielectric properties (εr,max= 6542,Td= 93 °C,TF-R= 108 °C,Tm= 324 °C andδA= 164 K). The highest off-resonance figure of merit (FoM) for energy harvesting of 6.36 pm2N−1was also observed for the 1.0 mol% Al2O3ceramic, which is suggesting that this ceramic has potential to be one of the promising lead-free piezoelectric candidates for further use in energy harvesting applications.

Cite

CITATION STYLE

APA

Jaita, P., Manotham, S., & Rujijanagul, G. (2020). Influence of Al2O3nanoparticle doping on depolarization temperature, and electrical and energy harvesting properties of lead-free 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3ceramics. RSC Advances, 10(53), 32078–32087. https://doi.org/10.1039/d0ra04866f

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free