Compartmentalised energy metabolism supporting glutamatergic neurotransmission in response to increased activity in the rat cerebral cortex: A 13C MRS study in vivo at 14.1 T

N/ACitations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Many tissues exhibit metabolic compartmentation. In the brain, while there is no doubt on the importance of functional compartmentation between neurons and glial cells, there is still debate on the specific regulation of pathways of energy metabolism at different activity levels. Using 13 C magnetic resonance spectroscopy (MRS) in vivo, we determined fluxes of energy metabolism in the rat cortex under α-chloralose anaesthesia at rest and during electrical stimulation of the paws. Compared to resting metabolism, the stimulated rat cortex exhibited increased glutamate-glutamine cycle (+67 nmol/g/min, +95%, P < 0.001) and tricarboxylic (TCA) cycle rate in both neurons (+62 nmol/g/min, +12%, P < 0.001) and astrocytes (+68 nmol/g/min, +22%, P = 0.072). A minor, non-significant modification of the flux through pyruvate carboxylase was observed during stimulation (+5 nmol/g/min, +8%). Altogether, this increase in metabolism amounted to a 15% (67 nmol/g/min, P < 0.001) increase in CMR glc(ox), i.e. the oxidative fraction of the cerebral metabolic rate of glucose. In conclusion, stimulation of the glutamate-glutamine cycle under α-chloralose anaesthesia is associated to similar enhancement of neuronal and glial oxidative metabolism.

Cite

CITATION STYLE

APA

Sonnay, S., Duarte, J. M. N., Just, N., & Gruetter, R. (2015). Compartmentalised energy metabolism supporting glutamatergic neurotransmission in response to increased activity in the rat cerebral cortex: A 13C MRS study in vivo at 14.1 T. Journal of Cerebral Blood Flow and Metabolism, 36(5), 928–940. https://doi.org/10.1177/0271678X16629482

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free