Accurate prediction of significant liver fibrosis using the Pentra score model in patients with chronic hepatitis C

4Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

INTRODUCTION Noninvasive methods are increasingly used in the clinical assessment of patients with chronic hepatitis C (CHC). OBJECTIVES We aimed to develop a predictive model for the evaluation of significant fibrosis in patients with CHC, based on serum biomarkers. We compared the accuracy of our model in detecting significant fibrosis with currently known markers / models of fibrosis (such as the aspartate aminotransferase to platelet ratio index [APRI], the Fibrosis–4 [FIB–4] score, and the Forns index). PATIENTS AND METHODS A total of 242 patients with CHC not receiving antiviral treatment were divided into 2 groups: training group (n = 150) and validation group (n = 92). Significant fibrosis was defined as F2 or higher on the Meta–analysis of Histological Data in Viral Hepatitis (METAVIR) scale. RESULTS Multivariable analysis revealed that age (P <0.001), pentraxin 3 (PTX3) levels (P = 0.009), γ–glutamyl transpeptidase (GGT) to platelet count (PLT) ratio (P = 0.08), and hyaluronic acid levels (HA) (P = 0.07) were independent predictors of significant fibrosis. Based on that, we developed a model for predicting significant fibrosis: Pentra score = 0.176 × PTX3 (ng/ml) + 0.522 × HA (ng/ml) + 0.29 × GGT (IU/l) to PLT (×109/l) ratio + 0.14 × age (years) – 3.9346. Then, we compared our model with the bio–markers and models currently used to predict liver fibrosis. The Pentra score yielded the largest area under the receiver operating characteristic curve for predicting significant fibrosis in the training and validation groups (0.894 and 0.867, respectively). It also had the highest diagnostic accuracy in both groups (90.6% and 87.0%, respectively). CONCLUSIONS Our model for detecting significant fibrosis in patients with CHC using pentraxin 3 and other serum biomarkers compares well with the existing and previously published indices. However, further validation in larger cohorts is needed.

Cite

CITATION STYLE

APA

Górka–Dynysiewicz, J., Pazgan–Simon, M., & Zuwała–Jagiełło, J. (2020). Accurate prediction of significant liver fibrosis using the Pentra score model in patients with chronic hepatitis C. Polish Archives of Internal Medicine, 130(2), 112–120. https://doi.org/10.20452/pamw.15134

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free