Diversity of ACE2 and its interaction with SARS-CoV-2 receptor binding domain

10Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

COVID-19, the clinical syndrome caused by the SARS-CoV-2 virus, has rapidly spread globally causing hundreds of millions of infections and over two million deaths. The potential animal reservoirs for SARS-CoV-2 are currently unknown, however sequence analysis has provided plausible potential candidate species. SARS-CoV-2 binds to the angiotensin I converting enzyme 2 (ACE2) to enable its entry into host cells and establish infection. We analyzed the binding surface of ACE2 from several important animal species to begin to understand the parameters for the ACE2 recognition by the SARSCoV- 2 spike protein receptor binding domain (RBD). We employed Shannon entropy analysis to determine the variability of ACE2 across its sequence and particularly in its RBD interacting region, and assessed differences between various species' ACE2 and human ACE2. Recombinant ACE2 from human, hamster, horseshoe bat, cat, ferret, and cow were evaluated for RBD binding. A gradient of binding affinities were seen where human and hamster ACE2 were similarly in the low nanomolar range, followed by cat and cow. Surprisingly, horseshoe bat (Rhinolophus sinicus) and ferret (Mustela putorius) ACE2s had poor binding activity compared with the other species' ACE2. The residue differences and binding properties between the species' variants provide a framework for understanding ACE2-RBD binding and virus tropism.

Cite

CITATION STYLE

APA

Low-Gan, J., Huang, R., Kelley, A., Jenkins, G. W., McGregor, D., & Smider, V. V. (2021). Diversity of ACE2 and its interaction with SARS-CoV-2 receptor binding domain. Biochemical Journal, 478(19), 3671–3684. https://doi.org/10.1042/BCJ20200908

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free