Characteristics, sources and risk assessments of heavy metal pollution in soils of typical chlor-alkali residue storage sites in northeastern China

5Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

In this study, thirty-four soil samples from a typical chlor-alkali slag residue storage site near the city of Qiqihar in northeastern China were collected and their arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc concentrations were determined. Sources of these heavy metals were analyzed with a positive matrix factorization model, and the health risks associated with different pollution sources were calculated. The results showed that mercury was the main heavy metal pollutant at the site (maximum concentration of 112.19 mg.kg-1) and the soil was also contaminated with arsenic, copper and lead. The sources of eight heavy metals were: mixed oil refinery wastewater and parent material (arsenic, chromium, copper and lead), vinyl chloride waste source (mercury), parent material (cadmium, nickel and zinc). The average potential ecological risk of the soil was 22344.39, with vinyl chloride waste source contributing 99.85% of this risk. The average carcinogenic risk of a mixture of oil refinery wastewater and parent material for children and adults was 9.06×10-6 and 6.36×10-6, respectively, accounting for 99.9% (children) and 99.48% (adults) of the total average carcinogenic risk. The average hazard index of vinyl chloride waste source for children and adults was 0.6 and 0.38, respectively, which accounted for 64.13% (children) and 52.34% (adults) of the total hazard index. These results provide a reference for soil pollution risk assessments at this type of site.

Cite

CITATION STYLE

APA

Wu, Z., Zhang, D., Xia, T., & Jia, X. (2022). Characteristics, sources and risk assessments of heavy metal pollution in soils of typical chlor-alkali residue storage sites in northeastern China. PLoS ONE, 17(9 9). https://doi.org/10.1371/journal.pone.0273434

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free