Effects of processing parameters on the caffeine extraction yield during decaffeination of black tea using pilot-scale supercritical carbon dioxide extraction technique

35Citations
Citations of this article
71Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this pilot-scale study supercritical carbon dioxide (SCCO2) extraction technique was used for decaffeination of black tea. Pressure (250, 375, 500 bar), extraction time (60, 180, 300 min), temperature (55, 62.5, 70 °C), CO2 flow rate (1, 2, 3 L/min) and modifier quantity (0, 2.5, 5 mol%) were selected as extraction parameters. Three-level and five-factor response surface methodology experimental design with a Box–Behnken type was employed to generate 46 different processing conditions. 100% of caffeine from black tea was removed under two different extraction conditions; one of which was consist of 375 bar pressure, 62.5 °C temperature, 300 min extraction time, 2 L/min CO2 flow rate and 5 mol% modifier concentration and the other was composed of same temperature, pressure and extraction time conditions with 3 L/min CO2 flow rate and 2.5 mol% modifier concentration. Results showed that extraction time, pressure, CO2 flow rate and modifier quantity had great impact on decaffeination yield.

Cite

CITATION STYLE

APA

Ilgaz, S., Sat, I. G., & Polat, A. (2018). Effects of processing parameters on the caffeine extraction yield during decaffeination of black tea using pilot-scale supercritical carbon dioxide extraction technique. Journal of Food Science and Technology, 55(4), 1407–1415. https://doi.org/10.1007/s13197-018-3055-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free