Towards novel tacrine analogues: Pd(dppf)Cl2·CH2Cl2 catalyzed improved synthesis, in silico docking and hepatotoxicity studies

10Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

A plethora of 6-(hetero)aryl C-C and C-N bonded tacrine analogues has been made accessible by employing palladium mediated (Suzuki-Miyaura, Heck, Sonogashira, Stille and Buchwald) cross-coupling reactions, starting from either halogenated or borylated residues. The successful use of Pd(dppf)Cl2·CH2Cl2 as a common catalytic system in realizing all these otherwise challenging transformations is the highlight of our optimized protocols. The analogues thus synthesized allow the available chemical space around the C-6 of this biologically relevant tacrine core to be explored. The in silico docking studies of the synthesized compounds were carried out against the acetylcholinesterase (AChE) enzyme. The hepatotoxicity studies of these compounds were done against complexes of CYP1A2 and CYP3A4 proteins with known inhibitors like 7,8-benzoflavone and ketoconazole, respectively.

Cite

CITATION STYLE

APA

Babu, A., Joy, M. N., Sunil, K., Sajith, A. M., Santra, S., Zyryanov, G. V., … Muniraju, K. (2022). Towards novel tacrine analogues: Pd(dppf)Cl2·CH2Cl2 catalyzed improved synthesis, in silico docking and hepatotoxicity studies. RSC Advances, 12(35), 22476–22491. https://doi.org/10.1039/d2ra03225b

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free