The pathogen Pseudomonas aeruginosa uses quorum sensing (QS) to control virulence and biofilm formation. Enzymatic disruption of quorum sensing is a promising anti-infection therapeutic strategy that does not rely on antibiotics. Here, a novel gene (aii810) encoding an N-acylhomoserine lactonase was isolated from the Mao-tofu metagenome for the first time. Aii810 encoded a protein of 269 amino acids and was expressed in Escherichia coli BL21 (DE3) in soluble form. It showed the highest activity at 20°C, and it maintained 76.5% of activity at 0°C and more than 50% activity at 0-40°C. The optimal pH was 8.0. It was stable in both neutral and slightly alkaline conditions and at temperatures below 40°C. The enzyme hydrolyzed several ρ-nitrophenyl esters, but its best substrate was ρ-nitrophenyl acetate. Its kcat and Km values were 347.7 S-1 and 205.1 μM, respectively. It efficiently degraded N-butyryl-L-homoserine lactone and N-(3-oxododecanoyl)-L-homoserine lactone, exceeding hydrolysis rates of 72.3 and 100%, respectively. Moreover, Aii810 strongly attenuated P. aeruginosa virulence and biofilm formation. This enzyme with high anti-QS activity was the most cold-adapted N-acylhomoserine lactonase reported, which makes it an attractive enzyme for use as a therapeutic agent against P. aeruginosa infection.
CITATION STYLE
Fan, X., Liang, M., Wang, L., Chen, R., Li, H., & Liu, X. (2017). Aii810, a novel cold-adapted N-acylhomoserine lactonase discovered in a metagenome, can strongly attenuate Pseudomonas aeruginosa virulence factors and biofilm formation. Frontiers in Microbiology, 8(OCT). https://doi.org/10.3389/fmicb.2017.01950
Mendeley helps you to discover research relevant for your work.