On the influence of North Pacific sea surface temperature on the Arctic winter climate

92Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Differences between two ensembles of Goddard Earth Observing System Chemistry-Climate Model simulations isolate the impact of North Pacific sea surface temperatures (SSTs) on the Arctic winter climate. One ensemble of extended winter season forecasts is forced by unusually high SSTs in the North Pacific, while in the second ensemble SSTs in the North Pacific are unusually low. High - Low differences are consistent with a strengthened Western Pacific atmospheric teleconnection pattern, and in particular, a weakening of the Aleutian low. This relative change in tropospheric circulation inhibits planetary wave propagation into the stratosphere, in turn reducing polar stratospheric temperature in mid- and late winter. The number of winters with sudden stratospheric warmings is approximately tripled in the Low ensemble as compared with the High ensemble. Enhanced North Pacific SSTs, and thus a more stable and persistent Arctic vortex, lead to a relative decrease in lower stratospheric ozone in spring, affecting the April clear-sky UV index at Northern Hemisphere midlatitudes. © 2012 American Geophysical Union. All Rights Reserved.

Cite

CITATION STYLE

APA

Hurwitz, M. M., Newman, P. A., & Garfinkel, C. I. (2012). On the influence of North Pacific sea surface temperature on the Arctic winter climate. Journal of Geophysical Research Atmospheres, 117(19). https://doi.org/10.1029/2012JD017819

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free