Abstract
TMEM16A is essential for Ca2+-activated Cl− conductance in vascular smooth muscle. The importance of TMEM16A for agonist-induced vascular constriction and blood pressure control is, however, under debate. Previous studies suggested that TMEM16A might have a complex cellular function beyond being essential for the Ca2+-activated Cl− conductance, for example modulation of Ca2+ channel expression. Mice with constitutive, smooth muscle-specific expression of siRNA directed against Tmem16a (transgenic mice, TG) were generated. Isometric constrictions of isolated aorta, mesenteric, femoral and tail arteries from TG mice were compared with wild-types. Protein expression was analysed by Western blots. Blood pressure and heart rate were studied telemetrically. Significant TMEM16A down-regulation was seen in aorta and tail arteries, while no changes were detected in mesenteric and femoral arteries. Contractile responses of mesenteric and femoral arteries from TG and wild-type mice were not different. Aorta from TG mice showed reduced agonist-induced constriction, while their responses to elevated K+ were unchanged. Tail arteries from TG mice also constricted less to adrenergic stimulation than wild-types. Surprisingly, tail arteries from TG mice constricted less to elevated K+ too and were more sensitive to nifedipine-induced relaxation. Consistently, TMEM16A down-regulation in tail arteries was associated with reduction in CACNA1C protein (i.e. vascular L-type Ca2+ channel) expression. No differences in blood pressure and heart rate between the groups were seen. This study suggests a complex contribution of TMEM16A in vascular function. We suggest that TMEM16A modulates arterial contractility, at least in part, indirectly via regulation of CACNA1C expression.
Cite
CITATION STYLE
Jensen, A. B., Joergensen, H. B., Dam, V. S., Kamaev, D., Boedtkjer, D., Füchtbauer, E. M., … Matchkov, V. V. (2018). Variable Contribution of TMEM16A to Tone in Murine Arterial Vasculature. Basic and Clinical Pharmacology and Toxicology, 123(1), 30–41. https://doi.org/10.1111/bcpt.12984
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.