Reversible data hiding (RDH) is an active research area in the field of information security. The RDH scheme allows the transmission of a secret message by embedding it into a cover image, and the receiver can recover the original cover image along with the extraction of the secret message. In this paper, we propose a bit plane compression based RDH scheme to hide a sequence of secret message bits into a grayscale image. In the proposed method, a selected bit plane of the cover image will be compressed using run-length encoding (RLE) scheme. Further, the RLE sequence has been efficiently encoded as a binary sequence using Elias gamma encoding method. The Elias gamma encoded bit sequence concatenated with the secret message bits are used to replace the selected bit plane after performing a sequence of Arnold transform. The Arnold transform helps to find a new scrambled version of the bit plane which is very close to the original bit plane to ensure the visual quality of the stego image. The RLE is a lossless compression technique, therefore recovery of the original image is possible by the receiver. The experimental study of the proposed scheme on the images from standard image dataset (USC-SIPI image dataset) shows that the proposed scheme outperforms the existing scheme in terms of the visual quality of the stego image without compromising the data embedding rate.
CITATION STYLE
Manikandan, V. M., & Masilamani, V. (2020). A Novel Bit plane Compression based Reversible Data Hiding Scheme with Arnold Transform. International Journal of Engineering and Advanced Technology, 9(5), 417–423. https://doi.org/10.35940/ijeat.e9517.069520
Mendeley helps you to discover research relevant for your work.