The visna virus Tat protein is required for efficient viral transcription from the visna virus long terminal repeat (LTR). AP-1 sites within the visna virus LTR, which can be bound by the cellular transcription factors Fos and Jun, are also necessary for Tat-mediated transcriptional activation. A potential mechanism by which the visna virus Tat protein could target the viral promoter is by protein-protein interactions with Fos and/or Jun bound to AP-1 sites in the visna virus LTR. Once targeted to the visna virus promoter, the Tat protein could then interact with basal transcription factors to activate transcription. To examine protein-protein interactions with cellular proteins at the visna virus promoter, we used an in vitro protein affinity chromatography assay and electrophoretic mobility shift assay, in addition to an in vivo two-hybrid assay, to show that the visna virus Tat protein specifically interacts with the cellular transcription factors Fos and Jun and the basal transcription factor TBP (TATA binding protein). The Tat domain responsible for interactions with Fos and Jun was localized to an alpha-helical domain within amino acids 34 to 69 of the protein. The TBP binding domain was localized to amino acids 1 to 38 of Tat, a region previously described by our laboratory as the visna virus Tat activation domain. The bZIP domains of Fos and Jun were found to be important for the interactions with Tat. Mutations within the basic domains of Fos and Jun abrogated binding to Tat in the in vitro assays. The visna virus Tat protein was also able to interact with covalently cross-linked Fos and Jun dimers. Thus, the visna virus Tat protein appears to target AP-1 sites in the viral promoter in a mechanism similar to the interaction of human T-cell leukemia virus type 1 Tax with the cellular transcription factor CREB, by binding the basic domains of an intact bZIP dimer. The association between Tat, Fos, and Jun would position Tat proximal to the viral TATA box, where the visna virus Tat activation domain could contact TBP to activate viral transcription.
CITATION STYLE
Morse, B. A., Carruth, L. M., & Clements, J. E. (1999). Targeting of the Visna Virus Tat Protein to AP-1 Sites: Interactions with the bZIP Domains of Fos and Jun In Vitro and In Vivo. Journal of Virology, 73(1), 37–45. https://doi.org/10.1128/jvi.73.1.37-45.1999
Mendeley helps you to discover research relevant for your work.