COVID-19 Impact on the Concentration and Composition of Submicron Particulate Matter in a Typical City of Northwest China

48Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this study, we evaluated the variations of air quality in Lanzhou, a typical city in Northwestern China impacted by the COVID-19 lockdown. The mass concentration and chemical composition of non-refractory submicron particulate matter (NR-PM1) were determined by a high-resolution aerosol mass spectrometer during January-March 2020. The concentration of NR-PM1 dropped by 50% from before to during control period. The five aerosol components (sulfate, nitrate, ammonium, chloride, and organic aerosol [OA]) all decreased during the control period with the biggest decrease observed for secondary inorganic species (70% of the total reduction). Though the mass concentration of OA decreased during the control period, its source emissions varied differently. OA from coal and biomass burning remained stable from before to during control period, while traffic and cooking related emissions were reduced by 25% and 50%, respectively. The low concentration during the control period was attributed to the lower production rate for secondary aerosols.

Author supplied keywords

Cite

CITATION STYLE

APA

Xu, J., Ge, X., Zhang, X., Zhao, W., Zhang, R., & Zhang, Y. (2020). COVID-19 Impact on the Concentration and Composition of Submicron Particulate Matter in a Typical City of Northwest China. Geophysical Research Letters, 47(19). https://doi.org/10.1029/2020GL089035

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free