Spin-decoupled metasurface for broadband and pixel-saving polarization rotation and wavefront control

  • Ji R
  • Song K
  • Guo X
  • et al.
17Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this paper, a strategy to achieve a simultaneous wavefront shaping and polarization rotation, without compromising the number of pixels and energy efficiency as well as having broadband operation range, is proposed. This strategy is based on the application of a spin-decoupled phase metasurface composed by only one set of metal-insulator-metal (MIM) umbrella-shaped chiral unit cells. Quasi-non-dispersive and spin-decoupled phase shift can be achieved simply by changing single structural parameter of the structure. By further merging the Pancharatnam-Berry (PB) geometric phase, conversion of an incident LP light beam into right- and left-handed circularly polarized reflected beams with similar amplitudes, desired phase profiles and controlled phase retardation on a nanoscale is enabled with high efficiency. Based on the proposed strategy, a polarization-insensitive hologram generator with control optical activity, and a multiple ring vortex beam generator are realized. The results obtained in this work provide a simple and pixel-saving approach to the design of integratable and multitasking devices combining polarization manipulation and wavefront shaping functions, such as vectorial holographic generators, multifocal metalenses, and multichannel vector beam generators.

Cite

CITATION STYLE

APA

Ji, R., Song, K., Guo, X., Xie, X., Zhao, Y., Jin, C., … Lu, W. (2021). Spin-decoupled metasurface for broadband and pixel-saving polarization rotation and wavefront control. Optics Express, 29(16), 25720. https://doi.org/10.1364/oe.431740

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free