Purpose: Traditional classification algorithms always have an incorrect prediction. As the misclassification rate increases, the usefulness of the learning model decreases. This paper presents the development of a wisdom framework that reduces the error rate to less than 3% without human intervention. Design/methodology/approach: The proposed WisdomModel consists of four stages: build a classifier, isolate the misclassified instances, construct an automated knowledge base for the misclassified instances and rectify incorrect prediction. This approach will identify misclassified instances by comparing them against the knowledge base. If an instance is close to a rule in the knowledge base by a certain threshold, then this instance is considered misclassified. Findings: The authors have evaluated the WisdomModel using different measures such as accuracy, recall, precision, f-measure, receiver operating characteristics (ROC) curve, area under the curve (AUC) and error rate with various data sets to prove its ability to generalize without human involvement. The results of the proposed model minimize the number of misclassified instances by at least 70% and increase the accuracy of the model minimally by 7%. Originality/value: This research focuses on defining wisdom in practical applications. Despite of the development in information system, there is still no framework or algorithm that can be used to extract wisdom from data. This research will build a general wisdom framework that can be used in any domain to reach wisdom.
CITATION STYLE
Mahmood, I., & Abdullah, H. (2021). WisdomModel: convert data into wisdom. Applied Computing and Informatics. https://doi.org/10.1108/ACI-06-2021-0155
Mendeley helps you to discover research relevant for your work.