Abstract
A new, 3-D electromagnetic (EM), hybrid, particle-in-cell (PIC) code, FLAME has been constructed to study low-frequency, large orbit plasmas in realistic cylindrical configurations. The stability and equilibrium of strong ion rings in magnetized plasmas are the first issues suitable for its application. In FLAME the EM-field is governed by Maxwell's equations in the quasi-neutral Darwin approximation (with displacement current neglected), the ion components are represented by discrete macro-particles, and the plasma electrons are modeled as a massless cold fluid. All physical quantities are expanded into finite Fourier series in the azimuthal (θ) direction. The discretization in the poloidal (r,z) plane is done by a finite-difference staggered grid method. The electron fluid equations include a finite scalar resistivity and macro-particles experience slowing-down collisions. A substantial reduction of computation time is achieved by enabling separate time advances of background and beam particle species in the time-averaged fields. FLAME has been optimized to run on parallel, MIMD systems, and has an object-oriented (C++) structure. The results of normal mode tests intended to verify the code ability to correctly model plasma phenomena are presented. We also investigate in 3-D the injection of a powerful annular ion beam into a plasma immersed in a magnetic cusp followed by an axially ramped applied magnetic field. A nonaxisymmetric perturbation is applied to the magnetic field and its effect on ion ring formation is analysed. © 1997 Academic Press.
Cite
CITATION STYLE
Omelchenko, Y. A., & Sudan, R. N. (1997). A 3-D Darwin-EM hybrid PIC code for ion ring studies. Journal of Computational Physics, 133(1), 146–159. https://doi.org/10.1006/jcph.1997.5670
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.