Optimized methodology for product recovery following emulsion PCR: applications for amplification of aptamer libraries and other complex templates

  • C. O’Connel G
  • G. Smothers C
N/ACitations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Bias and background issues make efficient amplification of complex template mixes such as aptamer and genomic DNA libraries via conventional PCR methods difficult; emulsion PCR is being increasingly used in such scenarios to circumvent these problems. However, before products generated via emulsion PCR can be used in downstream workflows, they need to be recovered from the water-in-oil emulsion. Often, emulsions are broken following amplification using volatile organic solvents, and product is subsequently isolated via precipitation. Unfortunately, the use of such solvents requires the implementation of special environmental controls, and the yield and purity of DNA isolated by precipitation can be highly variable. Here, we describe the optimization of a simple protocol which can be used to recover products following emulsion PCR using a 2-butanol extraction and subsequent DNA isolation via a commercially available clean-up kit. This protocol avoids the use of volatile solvents and precipitation steps, and we demonstrate that it can be used to reliably recover DNA from water-in-oil emulsions with efficiencies as high as 90%. Furthermore, we illustrate the practical applicability of this protocol by demonstrating how it can be implemented to recover a complex random aptamer library following amplification via emulsion PCR.

Cite

CITATION STYLE

APA

C. O’Connel, G., & G. Smothers, C. (2020). Optimized methodology for product recovery following emulsion PCR: applications for amplification of aptamer libraries and other complex templates. Journal of Biological Methods, 7(1), 1. https://doi.org/10.14440/jbm.2020.316

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free