Evidence for lesion bypass by yeast replicative DNA polymerases during DNA damage.

80Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The enzyme ribonucleotide reductase, responsible for the synthesis of deoxyribonucleotides (dNTP), is upregulated in response to DNA damage in all organisms. In Saccharomyces cerevisiae, dNTP concentration increases approximately 6- to 8-fold in response to DNA damage. This concentration increase is associated with improved tolerance of DNA damage, suggesting that translesion DNA synthesis is more efficient at elevated dNTP concentration. Here we show that in a yeast strain with all specialized translesion DNA polymerases deleted, 4-nitroquinoline oxide (4-NQO) treatment increases mutation frequency approximately 3-fold, and that an increase in dNTP concentration significantly improves the tolerance of this strain to 4-NQO induced damage. In vitro, under single-hit conditions, the replicative DNA polymerase epsilon does not bypass 7,8-dihydro-8-oxoguanine lesion (8-oxoG, one of the lesions produced by 4-NQO) at S-phase dNTP concentration, but does bypass the same lesion with 19-27% efficiency at DNA-damage-state dNTP concentration. The nucleotide inserted opposite 8-oxoG is dATP. We propose that during DNA damage in S. cerevisiae increased dNTP concentration allows replicative DNA polymerases to bypass certain DNA lesions.

Cited by Powered by Scopus

Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases

340Citations
N/AReaders
Get full text

Genome instability due to ribonucleotide incorporation into DNA

328Citations
N/AReaders
Get full text

Ribonucleotide reductase and cancer: Biological mechanisms and targeted therapies

323Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Sabouri, N., Viberg, J., Goyal, D. K., Johansson, E., & Chabes, A. (2008). Evidence for lesion bypass by yeast replicative DNA polymerases during DNA damage. Nucleic Acids Research, 36(17), 5660–5667. https://doi.org/10.1093/nar/gkn555

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 17

41%

Professor / Associate Prof. 13

32%

Researcher 11

27%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 22

48%

Biochemistry, Genetics and Molecular Bi... 21

46%

Medicine and Dentistry 2

4%

Economics, Econometrics and Finance 1

2%

Save time finding and organizing research with Mendeley

Sign up for free