The electroweak Higgs boson has been discovered in ongoing experiments at the LHC, leading to a mass of this particle of 126 GeV. This Higgs boson mediates the generation of mass for elementary particles, including the mass of elementary (current) quarks. These current-quark masses leave 98% of the mass of the atom unexplained. This large fraction is mediated by strong interaction, where instead of the Higgs boson the σ meson is the mediating particle. Though already introduced in 1957 by Schwinger, the σ meson has been integrated out in many theories of hadron properties because it had not been observed and was doubted to exist. With the observation of the σ meson in recent experiments on Compton scattering by the nucleon at MAMI (Mainz) it has become timely to review the status of experimental and theoretical researches on this topic. The Higgs boson mediates the generation of mass for elementary particles, including the mass of elementary (current) quarks. These current-quark masses leave 98% of the mass of the atom unexplained. This large fraction is mediated by strong interaction, where instead of the Higgs boson the σ meson is the mediating particle. With the observation of the σ meson in recent experiments on Compton scattering by the nucleon at MAMI (Mainz) it has become timely to review the status of experimental and theoretical researches on this topic. © 2014 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CITATION STYLE
Schumacher, M. (2014). Nambu’s Nobel prize, the σ meson and the mass of visible matter. Annalen Der Physik. Wiley-VCH Verlag. https://doi.org/10.1002/andp.201400077
Mendeley helps you to discover research relevant for your work.