An efficient feature extraction method with pseudo-Zernike moment in RBF neural network-based human face recognition system

90Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper introduces a novel method for the recognition of human faces in digital images using a new feature extraction method that combines the global and local information in frontal view of facial images. Radial basis function (RBF) neural network with a hybrid learning algorithm (HLA) has been used as a classifier. The proposed feature extraction method includes human face localization derived from the shape information. An efficient distance measure as facial candidate threshold (FCT) is defined to distinguish between face and nonface images. Pseudo-Zernike moment invariant (PZMI) with an efficient method for selecting moment order has been used. A newly defined parameter named axis correction ratio (ACR) of images for disregarding irrelevant information of face images is introduced. In this paper, the effect of these parameters in disregarding irrelevant information in recognition rate improvement is studied. Also we evaluate the effect of orders of PZMI in recognition rate of the proposed technique as well as RBF neural network learning speed. Simulation results on the face database of Olivetti Research Laboratory (ORL) indicate that the proposed method for human face recognition yielded a recognition rate of 99.3%.

Cite

CITATION STYLE

APA

Haddadnia, J., Ahmadi, M., & Faez, K. (2003). An efficient feature extraction method with pseudo-Zernike moment in RBF neural network-based human face recognition system. Eurasip Journal on Applied Signal Processing, 2003(9), 890–901. https://doi.org/10.1155/S1110865703305128

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free