Abstract
RNA editing of adenosine residues to inosine ('A-to-I editing') is the most common RNA modification event detectible with RNA sequencing (RNA-seq). While not directly detectable, inosine is read by next-generation sequencers as guanine. Therefore, mapping RNA-seq reads to their corresponding reference genome can detect potential editing events by identifying 'A-to-G' conversions. However, one must exercise caution when searching for editing sites, as A-to-G conversions also arise from sequencing errors as well as mutations. To address these complexities, several algorithms and software products have been developed to accurately identify editing events. Here, we survey currently available methods to analyze RNA editing events and introduce a new easy-to-use bioinformatics tool 'RNAEditor' for the detection of RNA editing events. During the development of RNAEditor, we noticed editing often happened in clusters, which we named 'editing islands'. We developed a clustering algorithm to find editing islands and included it in RNAEditor. RNAEditor is freely available at http:// rnaeditor.uni-frankfurt.de.We anticipate that RNAEditor will provide biologists with an easy-to-use tool for studying RNA editing events and the newly defined editing islands.
Author supplied keywords
Cite
CITATION STYLE
John, D., Weirick, T., Dimmeler, S., & Uchida, S. (2017). RNAEditor: Easy detection of RNA editing events and the introduction of editing islands. Briefings in Bioinformatics, 18(6), 993–1001. https://doi.org/10.1093/bib/bbw087
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.