Metabolic suppression identifies new antibacterial inhibitors under nutrient limitation

103Citations
Citations of this article
218Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Characterizing new drugs and chemical probes of biological systems is hindered by difficulties in identifying the mechanism of action (MOA) of biologically active molecules. Here we present a metabolite suppression approach to explore the MOA of antibacterial compounds under nutrient restriction. We assembled an array of metabolites that can be screened for suppressors of inhibitory molecules. Further, we identified inhibitors of Escherichia coli growth under nutrient limitation and charted their interactions with our metabolite array. This strategy led to the discovery and characterization of three new antibacterial compounds, MAC168425, MAC173979 and MAC13772. We showed that MAC168425 interferes with glycine metabolism, MAC173979 is a time-dependent inhibitor of p-aminobenzoic acid biosynthesis and MAC13772 inhibits biotin biosynthesis. We conclude that metabolite suppression profiling is an effective approach to focus MOA studies on compounds impairing metabolic capabilities. Such bioactives can serve as chemical probes of bacterial physiology and as leads for antibacterial drug development. © 2013 Nature America, Inc. All rights reserved.

Cite

CITATION STYLE

APA

Zlitni, S., Ferruccio, L. F., & Brown, E. D. (2013). Metabolic suppression identifies new antibacterial inhibitors under nutrient limitation. Nature Chemical Biology, 9(12), 796–804. https://doi.org/10.1038/nchembio.1361

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free