Investigating the effects of external fields polarization on the coupling of pure magnetic waves in the human body in very low frequencies

  • Golestani-Rad L
  • Elahi B
  • Rashed-Mohassel J
N/ACitations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper we studied the effects of external fields' polarization on the coupling of pure magnetic fields into human body. Finite Difference Time Domain (FDTD) method is used to calculate the current densities induced in a 1 cm resolution anatomically based model with proper tissue conductivities. Twenty different tissues have been considered in this investigation and scaled FDTD technique is used to convert the results of computer code run in 15 MHz to low frequencies which are encountered in the vicinity of industrial induction heating and melting devices. It has been found that external magnetic field's orientation due to human body has a pronounced impact on the level of induced currents in different body tissues. This may potentially help developing protecting strategies to mitigate the situations in which workers are exposed to high levels of external magnetic radiation.

Cite

CITATION STYLE

APA

Golestani-Rad, L., Elahi, B., & Rashed-Mohassel, J. (2007). Investigating the effects of external fields polarization on the coupling of pure magnetic waves in the human body in very low frequencies. BioMagnetic Research and Technology, 5(1). https://doi.org/10.1186/1477-044x-5-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free