Predicting rice diseases across diverse agro-meteorological conditions using an artificial intelligence approach

33Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.
Get full text

Abstract

With the aid of a plant disease forecasting model, the emergence of plant diseases in a given region can be predicted ahead of time. This makes it easier to take proactive steps to reduce losses before they occur. The proposed model attempts to find an association between agrometeorological parameters and the occurrence of the four types of rice diseases. Rice is the staple food of people in Maharashtra. The four major diseases that occur on rice crops are focused on this paper (namely Rice Blast, False Smut, Bacterial Blight and Brown Spot) as these diseases spread rapidly and lead to economic loss. This research paper demonstrates the usage of artificial neural network (ANN) to detect, classify and predict the occurrence of rice diseases based on diverse agro-meteorological conditions. The results were carried out on two cases of dataset split that is 70-30% and 80-20%. The various types of activation function (AF) such as sigmoid, tanH, ReLU and softmax are implemented and compared based on various evaluation metrics such as overall Accuracy, Precision, Recall and F1 score. It can be concluded that the softmax AF applied to 70-30% split of dataset gives the highest accuracy of 92.15% in rice disease prediction.

Cite

CITATION STYLE

APA

Patil, R. R., & Kumar, S. (2021). Predicting rice diseases across diverse agro-meteorological conditions using an artificial intelligence approach. PeerJ Computer Science, 7, 1–25. https://doi.org/10.7717/peerj-cs.687

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free