Estimation of biomass composition from genomic and transcriptomic information

  • Santos S
  • Rocha I
N/ACitations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Given the great potential impact of the growing number of complete genome-scale metabolic network reconstructions of microorganisms, bioinformatics tools are needed to simplify and accelerate the course of knowledge in this field. One essential component of a genomescale metabolic model is its biomass equation, whose maximization is one of the most common objective functions used in Flux Balance Analysis formulations. Some components of biomass, such as amino acids and nucleotides, can be estimated from genome information, providing reliable data without the need of performing lab experiments. In this work a java tool is proposed that estimates microbial biomass composition in amino acids and nucleotides, from genome and transcriptomic information, using as input files sequences in FASTA format and files with transcriptomic data in the csv format. This application allows to obtain the results rapidly and is also a user-friendly tool for users with any or little background in informatics (http://darwin.di.uminho.pt/biomass/). The results obtained using this tool are fairly close to experimental data, showing that the estimation of amino acid and nucleotide compositions from genome information and from transcriptomic data is a good alternative when no experimental data is available.

Cite

CITATION STYLE

APA

Santos, S., & Rocha, I. (2017). Estimation of biomass composition from genomic and transcriptomic information. Journal of Integrative Bioinformatics, 13(2), 1–14. https://doi.org/10.1515/jib-2016-285

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free