Abstract
The impact of 2′-deoxy-2′-fluoroarabinonucleotide residues (2′F-araN) on different G-quadruplexes derived from a thrombin-binding DNA aptamer d(G2T2G2 TGTG2T2G2), an anti-HIV phosphorothioate aptamer PS-d(T2G4T2) and a DNA telomeric sequence d(G4T4G4) via UV thermal melting (Tm) and circular dichroism (CD) experiments has been investigated. Generally, replacement of deoxyguanosines that adopt the anti conformation (anti-guanines) with 2′F-araG can stabilize G-quartets and maintain the quadruplex conformation, while replacement of syn-guanines with 2′F-araG is not favored and results in a dramatic switch to an alternative quadruplex conformation. It was found that incorporation of 2′F-araG or T residues into a thrombin-binding DNA G-quadruplex stabilizes the complex (ΔTm up to ∼ +3°C/ 2′F-araN modification); 2′F-araN units also increased the half-life in 10% fetal bovine serum (FBS) up to 48-fold. Two modified thrombin-binding aptamers (PG13 and PG14) show an approximately 4-fold increase in binding affinity to thrombin, as assessed via a nitrocellulose filter binding assay, both with increased thermal stability (∼1°C/2′F-ANA modification increase in Tm) and nuclease resistance (4-7-fold) as well. Therefore, the 2′-deoxy-2′-fluoro-d-arabinonucleic acid (2′F-ANA) modification is well suited to tune (and improve) the physicochemical and biological properties of naturally occurring DNA G-quartets. © 2007 The Author(s).
Cite
CITATION STYLE
Peng, C. G., & Damha, M. J. (2007). G-quadruplex induced stabilization by 2′-deoxy-2′-fluoro-d-arabinonucleic acids (2′F-ANA). Nucleic Acids Research, 35(15), 4977–4988. https://doi.org/10.1093/nar/gkm520
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.