Abstract
Incorporating rigid cyclic acetal and ketal units into polymer structures is an important strategy toward recyclable high-performance materials from renewable resources. In the present work, citric acid, a widely used platform chemical derived from biomass, has been efficiently converted into di- and tricyclic diketones. Ketalization with glycerol or trimethylolpropane afforded rigid spirodiols, which were obtained as complex mixtures of isomers. After a comprehensive NMR analysis, the spirodiols were converted into the respective di(meth)acrylates and utilized in thiol-ene polymerizations in combination with different dithiols. The resulting poly(β-thioether ester ketal)s were thermally stable up to 300 °C and showed glass-transition temperatures in a range of -7 to 40 °C, depending on monomer composition. The polymers were stable in aqueous acids and bases, but in a mixture of 1 M aqueous HCl and acetone, the ketal functional groups were cleanly hydrolyzed, opening the pathway for potential chemical recycling of these materials. We envision that these novel bioderived spirodiols have a great potential to become valuable and versatile bio-based building blocks for several different kinds of polymer materials.
Cite
CITATION STYLE
Sedrik, R., Bonjour, O., Laanesoo, S., Liblikas, I., Pehk, T., Jannasch, P., & Vares, L. (2022). Chemically Recyclable Poly(β-thioether ester)s Based on Rigid Spirocyclic Ketal Diols Derived from Citric Acid. Biomacromolecules, 23(6), 2685–2696. https://doi.org/10.1021/acs.biomac.2c00452
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.