Bacteria and Archaea are evolutionarily and biochemically distinct domains found together in many environments. Robust 'universal' PCR primer sets targeting both the bacterial 16S rRNA gene and the type I chaperonin gene have been established. However, 'universal' PCR primers for Archaea are currently limited to the 16S rRNA gene. We investigated the type II chaperonin (known as the thermosome, TF55, CCT or TCP-1) as a potential universal target (UT) for Archaea. Reproducible amplification of thermosome gene sequences from all major phyla tested was achieved through the application of a mixture or 'cocktail' of two forward and two reverse primers. Phylogenies based on the ∼750-bp thermosome UT were congruent with 16S rRNA gene phylogenies while exhibiting longer branch lengths, improving resolution of closely related taxa. 'Universal' thermosome primers were applied to profiling the archaeal community of dairy cow rumen and results compared with profiles based on the 16S rRNA gene and methyl co-enzyme M reductase (methanogen-specific) gene. Clone libraries generated from each target gene, as well as a pyrosequencing profile of one thermosome rumen library, revealed that all three targets consistently detected Methanobrevibacter smithii, Methanobrevibacter ruminantium and Methanosphaera stadtmanae as the dominant constituents; however, thermosome gene sequences were more diverse than either of the other targets providing a higher resolution description of the archaeal community. These findings demonstrate that a universal thermosome PCR protocol is a powerful metagenomic tool for detecting and characterizing Archaea and archaeal communities. © 2012 International Society for Microbial Ecology All rights reserved.
CITATION STYLE
Chaban, B., & Hill, J. E. (2012). A “universal” type II chaperonin PCR detection system for the investigation of Archaea in complex microbial communities. ISME Journal, 6(2), 430–439. https://doi.org/10.1038/ismej.2011.96
Mendeley helps you to discover research relevant for your work.