CuO/TiO2/ZnO NPs Anchored Hydrogen Exfoliated Graphene: To Comprehend the Role of Graphene in Catalytic Reduction of p-Nitrophenol

8Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The present study deals with sonochemically in situ synthesis of a novel functional catalyst using hydrogen exfoliated graphene (HEG) supported titanium dioxide (TiO2) and copper sulfate (CuSO4) doped with zinc oxide (ZnO) (abbreviated as Ti/Cu/Zn-HEG). The synthesis of the Ti/Cu/Zn-HEG nanocomposite (NCs) catalyst was confirmed through its characterizations by XRD, SEM-EDX, TEM, XPS, FTIR, and BET methods. It was assessed for catalytic conversion of a model aromatic compound para-nitrophenol (p-NP) in an aqueous solution. The p-NP is a nitroaromatic compound that has a toxic and mutagenic effect. Its removal from the water system is necessary to protect the environment and living being. The newly synthesized Ti/Cu/Zn-HEG NCs were applied for their higher stability and catalytic activity as a potential candidate for reducing p-NP in practice. The operating parameters, such as p-NP concentration, catalyst dosage, and operating time were optimized for 150 ppm, 400 ppm, and 10 min through response surface methodology (RSM) in Design-Expert software to obtain the maximum reduction p-NP up to 98.4% at its normal pH of 7.1 against the controls (using HEG, Ti/Cu-HEG, and Zn-HEG). Analysis of variance of the response suggested the regression equation to be significant for the process with a major impact on catalyst concentration and operating time. The model prediction data (from RSM) and experimental data were corroborated well as reflected through model’s low relative error (RE < 0.10), high regression coefficient (R2 > 0.97), and Willmott d-index (dwill-index > 0.95) values.

Cite

CITATION STYLE

APA

Behera, M., Alqahtani, F. O., Chakrabortty, S., Nayak, J., Banerjee, S., Kumar, R., … Tripathy, S. K. (2023). CuO/TiO2/ZnO NPs Anchored Hydrogen Exfoliated Graphene: To Comprehend the Role of Graphene in Catalytic Reduction of p-Nitrophenol. ACS Omega, 8(45), 42164–42176. https://doi.org/10.1021/acsomega.3c03859

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free