Higher energy derivatives in Hilbert Space Multi-Reference Coupled ClusterTheory: A constrained variational approach

13Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

In this paper, we present formulation based on constrained variational approach to compute higher energy derivatives upto third order in Hilbert Space Multi-Reference Coupled Cluster (HSMRCC) Theory. This is done through the use of a functional with Lagrange multipliers corresponding to HSMRCC method, as done by Helgaker, Jorgensen and Szalay. We derive explicit expressions upto third order energy derivatives. Using (2n + 1) and (2n + 2) rules, the cancellation of higher order derivatives of functional parameters that are not necessary according to these rules, is explicitly demonstated. Simplified expressions are presented. We discuss several aspects of the functional used and its potential implications.

Cite

CITATION STYLE

APA

Shamasundar, K. R., & Pal, S. (2002). Higher energy derivatives in Hilbert Space Multi-Reference Coupled ClusterTheory: A constrained variational approach. International Journal of Molecular Sciences, 3(6), 710–732. https://doi.org/10.3390/i3060710

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free