Abstract
PSD-95 is a scaffolding protein that regulates the synaptic localization of many receptors, channels, and signaling proteins. The NLGN gene family encodes single-pass transmembrane postsynaptic cell adhesion molecules that are important for synapse assembly and function. At excitatory synapses, NLGN1 mediates transsynaptic binding with neurexin, a presynaptic cell adhesion molecule, and also binds to PSD-95, although the relevance of the PSD-95 interaction is not clear. We now show that disruption of the NLGN1 and PSD-95 interaction decreases surface expression of NLGN1 in cultured neurons. Furthermore, PKA phosphorylates NLGN1 on S839, near the PDZ ligand, and dynamically regulates PSD-95 binding. A phosphomimetic mutation of NLGN1 S839 significantly reduced PSD-95 binding. Impaired NLGN1/PSD-95 binding diminished synaptic NLGN1 expression and NLGN1-mediated synaptic enhancement. Our results establish a phosphorylation-dependent molecular mechanism that regulates NLGN1 and PSD-95 binding and provides insights into excitatory synaptic development and function.
Author supplied keywords
Cite
CITATION STYLE
Jeong, J., Pandey, S., Li, Y., Badger, J. D., Lu, W., & Roche, K. W. (2019). PSD-95 binding dynamically regulates NLGN1 trafficking and function. Proceedings of the National Academy of Sciences of the United States of America, 116(24), 12035–12044. https://doi.org/10.1073/pnas.1821775116
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.