Abstract
Multispectral image classification of individual tree species is often difficult because of the spectral similarity among species. In this study, we attempted to analyze the suitability of hyperspectral image to classify coniferous tree species. Several image sets and classification methods were applied and the classification results were compared with the ones from multispectral image. Two airborne hyperspectral images (AISA, CASI) were obtained over the study area in the Gwangneung National Forest. For the comparison, ETM+ multispectral image was simulated using hyperspectral images as to have lower spectral resolution. We also used the transformed hyperspectral data to reduce the data volume for the classification. Three supervised classification schemes (SAM, SVM, MLC) were applied to thirteen image sets. In overall, hyperspectral image provides higher accuracies than multispectral image to discriminate coniferous species. AISA-dual image, which include additional SWIR spectral bands, shows the best result as compared with other hyperspectral images that include only visible and NIR bands. Furthermore, MNF transformed hyperspectral image provided higher classification accuracies than the full-band and other band reduced data. Among three classifiers, MLC showed higher classification accuracy than SAM and SVM classifiers. 요약 : 수종 간의 유사한 분광특성 때문에 기존의 다중분광영상을 이용한 수종분류는 한계가 있다. 본 연 구에서는 경기도 광릉수목원에 분포하는 다섯 종류의 침엽수림을 분류하기 위하여 초분광영상과 다중분광 영상의 적합성을 비교 분석하였다. 연구지역을 대상으로 두 종류의 항공 초분광영상(AISA, CASI)을 촬영하 였으며, 비교 목적으로 초분광영상을 이용하여 모의 제작된 ETM+ 다중분광영상을 사용하였다. 영상분류에 사용된 영상은 초분광영상의 모든 밴드를 포함한 영상, PCA 및 MNF 기법으로 차원 축소된 영상, 그리고 분-2 5-This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons. org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited
Cite
CITATION STYLE
Cho, H., & Lee, K.-S. (2014). Comparison between Hyperspectral and Multispectral Images for the Classification of Coniferous Species. Korean Journal of Remote Sensing, 30(1), 25–36. https://doi.org/10.7780/kjrs.2014.30.1.3
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.