Efficient decoding of turbo codes with nonbinary belief propagation

4Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper presents a new approach to decode turbo codes using a nonbinary belief propagation decoder. The proposed approach can be decomposed into two main steps. First, a nonbinary Tanner graph representation of the turbo code is derived by clustering the binary parity-check matrix of the turbo code. Then, a group belief propagation decoder runs several iterations on the obtained nonbinary Tanner graph. We show in particular that it is necessary to add a preprocessing step on the parity-check matrix of the turbo code in order to ensure good topological properties of the Tanner graph and then good iterative decoding performance. Finally, by capitalizing on the diversity which comes from the existence of distinct efficient preprocessings, we propose a new decoding strategy, called decoder diversity, that intends to take benefits from the diversity through collaborative decoding schemes.

Cite

CITATION STYLE

APA

Poulliat, C., Declercq, D., & Lestable, T. (2008). Efficient decoding of turbo codes with nonbinary belief propagation. Eurasip Journal on Wireless Communications and Networking, 2008. https://doi.org/10.1155/2008/473613

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free