Effect of masker level on infants' detection of tones in noise

7Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In adult listeners, the signal-to-noise ratio at masked threshold remains constant with increases in masker level over a wide range of stimulus conditions. This relationship was examined in 7-month-old infants by obtaining masked thresholds for .5-and 4-kHz tones presented in four levels of continuous masking noise. Adults were also tested for comparison. Masker spectrum levels ranged from 5 to 35 dB/Hz for .5-kHz tones, and from -5 to 25 dB/Hz for 4-kHz stimuli. Thresholds were determined for stimuli of both 10 and 100 msec in duration. The results indicated that infants' performance was more adultlike for 4-kHz stimuli. Although mean thresholds for both 10-and 100-msec, 4-kHz tones were approximately 7 dB higher in infants than in adults, E/N0 at threshold remained essentially constant over the 30-dB range of maskers employed. By contrast, infants' thresholds for .5-kHz tones were exceptionally high at lower levels of the masker. Threshold E/N0 decreased significantly as masker level increased from 5 to 35 dB/Hz, and this decrease was significantly greater for 10-than for 100-msec stimuli. Temporal summation of .5-kHz tones, measured as the difference between thresholds obtained at the two signal durations, was greater for infants than for adults at low levels of the masker. However, because infants' thresholds improved more rapidly with level for 10-than for 100-msec tones, age differences in temporal summation were no longer significant when masker spectrum level was 35 dB/Hz. These results suggest that the relationship between signal-to-noise ratio at masked threshold and level of the masker is dependent on both signal frequency and duration during infancy.

Cite

CITATION STYLE

APA

Berg, K. M., & Boswell, A. E. (1999). Effect of masker level on infants’ detection of tones in noise. Perception and Psychophysics, 61(1), 80–86. https://doi.org/10.3758/BF03211950

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free