Abstract
Glucagon-like peptide-1 (GLP-1) is a hormone that stimulates insulin secretion. Receptors for GLP-1 are also found in the brain, including the hippocampus, the center for memory and learning. Diabetes is a risk factor for decreasedmemory functions. We studied effects of GLP-1 and exendin-4, a GLP-1 receptor agonist, on g-Aminobutyric acid (GABA) signaling in hippocampal CA3 pyramidal neurons. GABA is the main inhibitory neurotransmitter and decreases neuronal excitability. GLP-1 (0.01-1 nmol/L) transiently enhanced synaptic and tonic currents, and the effects were blocked by exendin (9-39). Ten pmol/L GLP-1 increased both the spontaneous inhibitory postsynaptic current (sIPSC) amplitudes and frequency by a factor of 1.8. In 0.1, 1 nmol/L GLP-1 or 10, 50, or 100 nmol/L exendin-4, only the sIPSC frequency increased. The tonic current was enhanced by 0.01-1 nmol/L GLP-1 and by 0.5-100 nmol/L exendin-4. When action potentials were inhibited by tetrodotoxin (TTX), inhibitory postsynaptic currents decreased and currents were no longer potentiated by GLP-1 or exendin-4. In contrast, although the tonic current decreased in TTX, it was still enhanced by GLP-1 or exendin-4. The results demonstrate GLP-1 receptor regulation of hippocampal function and are consistent with GLP-1 receptor agonists enhancing GABAA signaling by pre- and postsynaptic mechanisms.
Cite
CITATION STYLE
Korol, S. V., Jin, Z., Babateen, O., & Birnir, B. (2015). GLP-1 and exendin-4 transiently enhance gabaa receptor-mediated synaptic and tonic currents in rat hippocampal ca3 pyramidal neurons. Diabetes, 64(1), 79–89. https://doi.org/10.2337/db14-0668
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.